21 Best Practices ... 157
 21.1 Sharing of Vaults ... 157
 21.2 Good Passwords .. 157

22 Manual Migration ... 159

23 Contribute .. 161
 23.1 How Can You Help Us? 161
 23.2 Before You Start .. 161

24 Vault Format History 163
 24.1 Format 8 .. 163
 24.2 Format 7 .. 163
 24.3 Format 6 .. 164
 24.4 Format 5 .. 164
 24.5 Format 4 .. 164
 24.6 Format 3 .. 165
Cryptomator encrypts your data quickly and easily, so you can safely upload it to your favourite cloud service. If you’re a first time user, you will probably want to follow this guide on how to get started. If you are interested in the security of Cryptomator, have a look at our security section.
You can start using Cryptomator by simply downloading it for free from our downloads page. Please choose the appropriate download for your operating system and check the minimum system requirements.

Note: You can find older releases as well as detailed changelogs in the GitHub releases section.

After downloading, the installation process depends on your operating system.

1.1 Windows

Launch the downloaded .exe file and follow the setup as usual. We recommend also installing Dokany, which is included in the installer.

Note: If you are updating Cryptomator by installing a new version and additionally want to update Dokany, you need to remove the old Dokany version first, restart the PC, and then execute the Cryptomator installer.

1.2 macOS

Open the downloaded .dmg file, accept the license, and drag & drop Cryptomator onto the Applications folder. We recommend also installing FUSE for macOS, which is linked from inside the .dmg file.

Note: In case the application is blocked by Gatekeeper, you need to change your Gatekeeper settings.

1.3 Linux

The primary option of using Cryptomator on Linux is via the AppImage. After you’ve downloaded the .appimage file, you simple need to make it executable and you can then run it.

If you are familiar with Flatpak, PPA or AUR, you can choose one of these options to install Cryptomator. The coordinates are available on our download page.
With Cryptomator you can create encrypted vaults. Each vault is protected by a password and can contain as many files and folders as you like.

When you’re a first-time user of Cryptomator, you obviously don’t have any vaults yet. If you start the application, you will be greeted with the following screen:

By clicking on the AddVault button in the lower left corner of the window, you can create a new vault.
If you want to add a new vault, you have essentially two options:

1. If you want to create a vault yourself, choose **Create New Vault**.
2. If you already have a vault, for example because someone shared a vault with you via a cloud storage service, you can instead choose **Open Existing Vault**.
3.1 Create a New Vault

If you chose to create a new vault, the wizard will now guide you through the vault creation process.

3.1.1 1. Choose a Name

You start by simply choosing a name for your vault.

Note: Your vault name will be used as a directory name on your file system. Make sure not to use any characters that might cause problems with your setup. Especially if you want to share the vault via the cloud with other users, keep in mind that these users might use different software or operating systems that might not cope well with special characters.
3.1.2 2. Choose a Storage Location

Next, choose where you want to save your vault. Since a vault is just a directory containing encrypted files, you need to store it somewhere. Usually this would be inside your cloud-synced directory. But you can choose any storage location, you like.

Keep in mind that Cryptomator is not a sync tool. You still need the software from your favourite cloud storage service.

In this example I want to encrypt files that get synchronized via Dropbox.

Note: You might not see all the above options, depending on what cloud services you have installed on your PC. Cryptomator tries to detect some well-known locations. You can always choose Custom Location and navigate to your cloud storage directory manually.
3.1.3 3. Choose a Password

Now it is time to choose a good password for your vault. Cryptomator requires at least 8 characters but we recommend you to use a longer phrases such as pass-sentences. The bar below the password field estimates the strength of your password.

![Password Input Dialog]

Warning: Nobody except for yourself knows this password and other than you might know it from online services, nobody can “reset” your password for you.

Note: If you plan to share this vault with a different person, you will both need to know the password. In this case, choose a password that is different from anything you tend to only use yourself. To share the password, use an encrypted messenger or any other secure means of communication.

Since we can not reset your password, we recommend you to create an additional recovery key.
3.1.4 4. Show Recovery Key (optional step)

If you chose to create a recovery key in the previous step, it will now be displayed. Make sure not to lose it. Ideally make a hard copy of it.

Warning: Keep the recovery key secret. Remember, just like your password, its purpose is to gain access to your vault!

For more details, take a look at our chapter about how to use a recovery key.
3.1.5 5. Done

That’s it. You have successfully created a new vault.
You can now unlock this vault using your password and start adding sensitive files to it.

3.2 Open an Existing Vault

If you chose to open an existing vault, all you need to do is to locate the `masterkey.cryptomator` file of the vault you want to open.

Note: If you created the vault on another device and cannot find it or its masterkey file, make sure that the directory containing the vault is properly synchronized and fully accessible on your device.
Once you have added a vault to Cryptomator, you will probably want to unlock it, so you can start adding files.
4.1 Unlocking a Vault

To unlock the selected vault, click on the large Unlock button in the center of Cryptomator window. You will then be prompted for your vault’s password:

Note: By checking the “Save Password” checkbox, the password will be stored in your operating system’s keychain.

Warning: Only store your password on trusted devices. Anyone with access to this computer will be able to access your vault, if the password is stored in the system keychain.

If your password is correct a confirmation is displayed. You can either just close this Window by clicking Done or click Reveal Vault in order to show your unlocked vault in your file manager.
4.2 Working with the Unlocked Vault

After unlocking, your vault’s contents will become available as a virtual drive on your PC. This means, that you interact with your confidential files in the same way as with any other hard drive or USB stick.

If you can not find the unlocked vault in your systems file manager (Windows Explorer, Finder, . . .), you can always click on Reveal Drive in your Cryptomator window:
Note: On Windows, you can choose the drive letter of the virtual drive for each vault via the advanced vault options.

4.3 Locking a vault

To lock your vault again simply click Lock and your data will be protected and encrypted again.
4.3. Locking a vault
Each Cryptomator vault is secured by a password. The security of your vault depends directly on the strength of its password, so choosing a strong password is key.

Additionally for each vault a unique recovery key can be derived. This key ensures that if you forget your password, you are able to create a new one. It is a human readable form of your decrypted masterkey and therefore independent of the current vault password and highly confidential.

This section explains how to change a password for a vault, show its recovery key and reset the password to a new one. All actions are done in the Password tab of the vault options. You can access it over the main window by selecting the vault in question, lock it if necessary and then open its Vault Options.

5.1 Change Password

You can change the password of an already existing vault. The only thing you need is to remember the current one.

Note: The password is used to derive a KEK, which is then used to encrypt further keys. The KEK changes, but the keys encrypted with the KEK will stay the same. The actual files will not get re-encrypted, meaning you can not upgrade a weak passphrase to a stronger one once the data has been synced to a service that allows recovery of older versions of the masterkey file.

If you like to encrypt your vault files with a new, stronger password, you need to create a new vault and drag the data from the old to the new one. Make sure to wipe all backups of the old vault afterwards.
To do so, click on the Change Password button in the Password tab of the vault options. In the opened window, you see three text input fields:

1. In the first you need to enter the current password of the vault.
2. The second one takes the new password in and as already said, we suggest to follow the creation rules for good passwords.
3. In the third for confirmation you need to enter the new password again.

In order to proceed, you need to confirm what you are doing by selecting the checkbox.

To finish the workflow and really change the password, click now on the Change button.

Note: Only if the second and third text input fields match and the checkbox is selected, the Change button is activated.

5.2 Show Recovery Key

It is not a problem, if you missed to display the recovery key during vault creation. You are still able to derive it and view it at a later point in time. To increase security, Cryptomator does not store it on your hard drive and always derives it on the fly.

Warning: Bear in mind that due to the ability of the recovery key to reset the current password, it is highly confidential. Ensure that only trusted persons have access to it and keep it at a safe spot.

To do so, click on the Display Recovery Key in the Password tab of the Vault Options and enter your password. A new window will open. It shows a sequence of words inside a text field. This sequence is the recovery key of the vault.
5.3 Reset Password

If you forgot the password for a vault, but saved the recovery key somewhere external, you are able to define a new password and gain access to the vault again.

Navigate to the Password tab in the vault options and click the Recover Password button. A new prompt is opened, asking to insert your recovery key into the shown text box. Enter it there by copying it from a file or typing.

Note: If you printed your recovery key on paper or stored it somewhere where you cannot copy it, Cryptomator offers you an auto completion feature for insertion. Type a letter and see if the shown word matches your key part. If so, you can press tab or right arrow key to auto complete the word. Otherwise enter more letters, the suggestion will change accordingly.
If the recovery key is valid, Cryptomator indicates this by a small message and activates the Next button.
Warning: By design of the recovery mechanism, *any* valid recovery key is accepted. But only the one derived from the vault resets the vault password in a way such that the your data is accessible afterwards. *If you use a different recovery key, the data already stored in the vault will be inaccessible.* It can be made accessible again by re-running the recovery mechanism with the original and correct recovery key.

In the last step you need to assign a new password to your vault. It is the same as during *vault creation* except that no new recovery key is generated. As already noted there, read the suggestion for choosing a *good password*.

Finish the dialog by entering the same password again and clicking the *Done* button. You can unlock your vault now with the new password.

Note: Since the recovery key stays the same, don’t discard it and put it to a safe location again.
After a vault is unlocked, it must be integrated into the system to be accessible for you. Cryptomator uses three different technologies (called adapters) for this integration:

1. **WebDAV** - a standardized protocol to manage directories and resources
2. **Dokany** - a windows specific driver for a deeper system integration
3. **FUSE** - a linux specific kernel module for a deeper system integration, also available for macOS

Each combination of operating system and adapter has its own set of settings and its benefits & drawbacks.

6.1 General Adapter Selection

Cryptomator only uses one adapter type to serve all your unlocked vaults. If you want to change it or only want to know which one is currently used, open the Preferences by clicking the gears symbol in the upper right corner of the main window and change to the Virtual Drive tab.

You can choose between WebDAV and, depending on your system, Dokany (Windows) or FUSE (linux, macOS).

Note: Dokany/FUSE may not be visible for selection. This means that Cryptomator is unable to detect a valid installation of them.

WebDAV has additional options for configuration:

1. **WebDAV Port** - Always present, it shows the port over which the WebDAV adapter communicates with itself.
2. **WebDAV scheme** - TODO

6.2 Options applicable to all Systems and Adapters

In this section mount options are described which are present on all operating systems and with all adapter types. Currently there is only one option, namely opening a vault in Read-Only mode. If the checkbox is set, you can unlock the vault, browse through its content and read or copy its files, but you cannot change or modify anything inside the vault.
6.3 WebDAV-specific options

WebDAV is a communication protocol to perform operations between a client (you) and a server (your computer) on directories and resources. Even though this protocol was designed for remote access, Cryptomator uses it only locally to display your files and allows you to work with them.

6.3.1 Windows

6.3.2 MacOS

6.3.3 Linux

6.4 Dokany-specific options

6.5 FUSE-specific options

6.5.1 MacOS

6.5.2 Linux
A vault is the fundamental object in Cryptomator. Like the term suggests, it represents the single location where all files inside this vault are stored encrypted. From the perspective of your operating system it is a normal directory containing at least two files and one directory:

7.1 Remove Vaults

You can remove a vault from the vault list by right clicking on the list entry. This is only possible while the vault is locked.

Note: By removing a vault from this list, it is not deleted from your filesystem. To irrevocably get rid of the vault, you can simply delete the vault directory (which contains your masterkey.cryptomator and the d directory) using your normal file manager.

7.2 Reorder Vaults

You can change the order of your vaults by dragging them to the desired position.

7.3 Vault Options

Each vault has an own set of settings which can be viewed and customized in the vault options window. To open it, select in the main window the locked vault in question and click the Vault Options button with the gear.

The options are divided in three categories:

1. General - Options not fitting into another category

You can select here if the vault is unlocked as soon as Cryptomator starts.
2. Mounting - All options about where and how you can access your unlocked vault

3. Password - Options and actions regarding your vault password and the recovery key
For **Mounting** and **Password** we refer to the regarding sections.
You can get Cryptomator for Android on

- Google Play
- APK Store
- F-Droid repository

As for the functionality of Cryptomator, the application does not differ using Google Play or the APK Store as installation type. Google Drive is excluded from the F-Droid version because Google Drive needs proprietary dependencies which doesn’t fit to the spirit of F-Droid.

The APK Store and F-Droid variant of Cryptomator was created to serve users who do not have Google PlayStore installed on their Android device. If you have a Google PlayStore on your device, we recommend using the PlayStore version of Cryptomator.

8.1 Google PlayStore

If you have installed Cryptomator via the Google PlayStore, you will receive updates as usual via the Google PlayStore.

After buying the app using Google PlayStore, it can be used with any number of devices that you have linked to the google account from your purchase. Furthermore it supports the “Google Play Family Library” function which means that the app can be used by up to 5 people in a family without having to buy it again. The conditions and how to create a “Google Play Family” can be found here: https://support.google.com/googleplay/answer/7007852?hl=en

Sometimes the Google PlayStore has problems to recognize that the app was already bought and asks you to buy again the app, see this topic to recover from this problem: [On how many devices can the app be installed using Google Play Store?](https://support.google.com/googleplay/answer/7007852?hl=en)

8.2 APK Store

The APK store version can be installed from our website https://cryptomator.org/android/. Please verify the SHA256 Signature after downloading the APK before installing. The download is a so-called APK (Android application package), which is an installation archive. Install the app by simply clicking on the APK. It is possible that the app in which you clicked on the APK is asking for “Install from Unknown Sources” permission, this is normal and must be activated for a short time (it is recommended to remove the permission afterwards).

This version does include an automatic updater that periodically checks if there is a newer version of this app, and if so, it can be downloaded and installed directly from within the app. Using the Update Check Interval in the Cryptomator settings, you can specify how often the update check is executed.

As this version wasn’t bought using Google’s PlayStore you need to buy a license key from our website https://cryptomator.org/android/. After Cryptomator is installed, you have to enter this key. This can be done
by copying and pasting the license into the field when asked for it or by clicking on the link starting with cryptomator://license/YOUR_LICENSE_KEY.

8.3 F-Droid repository

The F-Droid version can be installed after adding our F-Droid repository to the F-Droid app by opening this link on the device or scanning the following QR-Code:

As well as using the APK Store variant because this app version wasn’t bought using Google’s PlayStore you need to buy a license key from our website https://cryptomator.org/android/. After Cryptomator is installed, you have to enter this key. This can be done by copying and pasting the license into the field when asked for it or by clicking on the link starting with cryptomator://license/YOUR_LICENSE_KEY.

8.4 Requirements

Requires Android 8.0 or later.
CHAPTER NINE

CLOUD MANAGEMENT

Cloud services

- Sign out from Dropbox
 Cryptomator Skymatic

- Sign out from Google Drive
 test.cryptomator@gmail.com

- Sign out from OneDrive
 Julian Raufelder

- WebDAV connections

- Local storage locations
In “Cloud Services”, you can create or edit the connection between the Cryptomator app and your storage provider accounts.

Please enter the credentials for your provider account or in case of Google Drive choose your account. If your authentication was successful, some of the providers might ask you to grant Cryptomator access permission to your online files. Please allow this permission.

In Google Drive, OneDrive and Dropbox you can only create one connection between your cloud storage account and the Cryptomator app. You can’t connect to (for example) two different Dropbox accounts.

If the provider requested permission to access your online files you can remove Cryptomator permissions from your online storage account at any time. Please keep in mind that Cryptomator then cannot connect to your vault anymore.

9.1 Login Dropbox

3:17

https://www.dropbox.com/1/connec

Sign in to Dropbox to link with Cryptomator for Android

[Sign in with Google]

Frequently Asked Questions

Why can’t I connect to Dropbox accounts?

You can only connect to one Dropbox account. If you need to connect to another Dropbox account, you will need to remove the existing Dropbox connection and create a new one.

Privacy Policy

Dropbox’s Privacy Policy applies to your use of Dropbox services and this site. By using the Dropbox platform, you agree to Dropbox’s Privacy Policy and Terms of Service.

[Sign in] [Forgot your password?]
Cryptomator for Android would like access to the files and folders in your Dropbox. Learn more

[button] Cancel [button] Allow

Signed in as: julian.raufelder@skymatic.de
9.2 Login Google Drive

Choose account for Cryptomator

- geselthyn@googlemail.com
- test.cryptomator@gmail.com
- Add account
9.3 Login OneDrive

Sign in

Email, phone, or Skype

No account? Create one!

Can't access your account?

Sign-in options

Back Next
Enter password

Password

Forgot my password

Sign in
9.4 Login WebDAV

You can find here a list of the most common WebDAV URLs.

Click here to add locations
Note: While creating the WebDAV connection, please make sure to add the root of the accessible storage and don’t navigate directly into the vault.
9.5 Login Local Storage

The following pictures describes how to setup a location to access vaults stored on the internal storage of the device (the same applies for vaults located e.g. on a SD card):
Can't use this folder
To protect your privacy, choose another folder

1. CREATE NEW FOLDER

2. Vaults

USE THIS FOLDER
No items

USE THIS FOLDER
Allow Cryptomator to access files in Vaults?

This will let Cryptomator access current and future content stored in Vaults.

CANCEL ALLOW

USE THIS FOLDER

9.5. Login Local Storage
After creating the location, you can access it by clicking on the name of the location to add a vault or create a new vault.

Note: If you use a custom location please make sure to add the root folder of the storage like described in the pictures and don’t navigate directly into the vault.
10.1 Create a New Vault

To create a new vault, click on the plus sign and choose *Create new vault* in the next screen.
Note: If you already have a vault created with the desktop app and just want to add this vault to your mobile app, please select go to chapter Add Existing Vaults.

You will now be prompted to select the cloud provider where you want to store your vault.

Choose between Dropbox, Google Drive, OneDrive (works also with OneDrive for Business) or Local storage (which means your local device with all attached devices).

If your desired provider is not listed and offers WebDAV access, please select WebDAV as the storage location of your vault. Here you can find WebDAV URLs of Common Cloud Storage Services.
If not already done, you have to create the connection between the Cryptomator app and your storage provider account. Please follow the instructions in the *Cloud Management* chapter and continue later here.

Now that you’ve established a connection, you’ll add the existing vault.

In the first step, please enter a name for your new vault. This name will also be the folder name of your vault files in your online storage.
Then choose the location on your cloud storage where you want to have your encrypted vault files stored.
And last but not least, create a secure password for your vault. Basically, you have the whole Unicode for choosing a password including non-printable characters.
Warning: You have to remember this password at all times because there is no way to access your data if you forget your password. Choose a good password to make your data secure.

After you have confirmed your password, the vault is created. You will find it now on the start page of your Cryptomator app, where you can open your vault and optionally change settings. [documentation will follow]
10.1. Create a New Vault
10.2 Add Existing Vaults

To add an existing vault, click on the plus sign and choose *Add existing vault* in the next screen.
You will now be prompted to select the cloud provider where the vault is located.

Choose between Dropbox, Google Drive, OneDrive (works also with OneDrive for Business) or Local storage (which means your local device with all attached devices).

If your desired provider is not listed and offers WebDAV access, please select WebDAV as the storage location of your vault. Here you can find WebDAV URLs of Common Cloud Storage Services.

10.2. Add Existing Vaults
If not already done, you have to create the connection between the Cryptomator app and your storage provider account. Please follow the instructions in the Cloud Management chapter and continue later here.

Now that you’ve established a connection, you’ll add the existing vault.

In the first step, please choose the folder in which the vault is located. This folder name is the same as the vault name (in this example, our vault name is test vault so we select this folder).
Then choose the `masterkey.cryptomator` file.
Now the vault is added to the list of vaults. You will find it now on the start page of your Cryptomator app, where you can open your vault and optionally change settings. [documentation will follow]
10.2. Add Existing Vaults
10.3 Remove Vaults

If you want a specific vault to stop being displayed in Cryptomator, you select the \(\checkmark \) next to the vault and choose \textit{Remove}.
Confirm the deletion process using the Delete button.
Photos

Are you sure you want to remove this vault?

This action will only remove the vault from this list and not delete it physically.

CANCEL DELETE
Note: By removing a vault, it is only removed from the list but not deleted in the cloud. You can re-add the vault afterwards.
10.4 Change Vault Password

If you want to change the password of a specific vault in Cryptomator, you select the V next to the vault and choose Change password.
Enter the old password and choose a **secure** new one. Basically, you have the whole Unicode for choosing a password including non-printable characters.
Warning: You have to remember this password at all times because there is no way to access your data if you forget your password. Choose a good password to make your data secure.

Start the process using the CHANGE PASSWORD button.
10.4. Change Vault Password

Photos

Old Password

New Password

Retype password

Very weak

IMPORTANT: If you forget your password, there is no way to recover your data.

Changing password...

CANCEL CHANGE PASSWORD
Note: The password is used to derive a KEK, which is then used to encrypt further keys. The KEK changes, but the keys encrypted with the KEK will stay the same. The actual files will not get re-encrypted, meaning you cannot upgrade a weak passphrase to a stronger one once the data has been synced to a service that allows recovery of older versions of the masterkey file.

If you like to encrypt your vault files with a new, stronger password, you need to create a new vault and copy the data from the old to the new one. Make sure to wipe all backups of the old vault afterwards.
10.5 Rename Vault

If you want to change the name of a specific vault in Cryptomator, you select the ▼ next to the vault and choose Rename.
Choose a new name and confirm using the **RENAME** button.
10.5. Rename Vault
10.6 Change Vault Position

If you want to change the position of a specific vault in the vault list in Cryptomator, long-press on the vault and drag it to the desired position in the pressed state:
This section shows you how to work with a vault like view its content, move files or access it with other applications.

11.1 Unlock Vault

If you want to access the data inside a vault, you have to unlock it by selecting it.
In the next step, you have to unlock the vault using the password. If the device supports fingerprint authentication and you’ve activated it in the settings for this vault, you will be prompted to unlock using fingerprint. How to setup fingerprint authentication will be documented in a separate chapter.
11.1. Unlock Vault
After providing the credentials, the vault gets unlocked and opened.
11.1. Unlock Vault
You’re now able to edit the content of the vault.
11.2 Lock Vault

To lock an unlocked vault, there are several ways to do this:

- use the lock button in the vault list
- use the lock button in the notification
- use the lock button in the vault actions and
11.2. Lock Vault
All of the possibilities will result in the locked vault.
Note: The auto-lock timeout specified in the settings will lock the vault if Cryptomator is in background. Furthermore if not changed in settings, the vault gets locked if the screen turns off.

11.2. Lock Vault
11.3 View and Edit File

Start the view and edit process by clicking on a file. Finish the editing or viewing using the back button of the device until you’re back in Cryptomator. If the content has changed, the upload process starts.

11.4 Rename File or Folder

To change the name of a specific file or folder in Cryptomator, you select the ▼ next to the file or folder and choose Rename.
Choose a new name and confirm using the RENAME button.
Chapter 11. Working with Vaults
11.4. Rename File or Folder
11.5 Move File or Folder

To move a file or a folder into another folder, you select the √ next to the file or folder and choose Move.
Choose a new location by selecting a folder or by pressing the back button of your phone to navigate to the parent folder.
Confirm using the **MOVE** button.
While moving, you can use the button to create a new folder in the current folder.
Cryptomator Documentation, Release 1.6.0

96 Chapter 11. Working with Vaults
11.6 Delete File or Folder

To delete a specific file or folder in Cryptomator, you select the V next to the file or folder and choose Delete.
Confirm the deletion process using the DELETE button.
11.6. Delete File or Folder

Cryptobot.png

Are you sure you want to delete this file?

CANCEL DELETE
100 Chapter 11. Working with Vaults
Note: By deleting a folder, all subfolders and files inside are deleted recursively.
11.7 Export File or Folder

To export a specific file or folder in Cryptomator, you select the \(V \) next to the file or folder and choose *Export*.
Chose the target location where the file or folder should be exported to.
11.7. Export File or Folder
11.8 Share File with Other App

To share a specific file or folder in Cryptomator with another app, you select the \(\checkmark \) next to the file or folder and choose Share.
Choose the target app in which you will use the file or folder.
Note: By sharing a file or folder from Cryptomator with Cryptomator, you can copy content from one vault to another one.
11.9 Share File with Cryptomator

You can share files from another app with Cryptomator. We use as example the Files app from Android.

You select the file(s) to share by long clicking on it. Press the share button to choose to share these file(s) and select Cryptomator.
Choose the vault and optionally specify the target folder in the vault (default is the root).
Then the encryption and upload starts.
11.10 Search in Folder

Search for files or folders within the same folder using the magnifier.

Now you can enter the pattern after which you want to search in this folder.
Using the \textit{X} you can clear the pattern and after pressing it again, the filter mode is finished.
In the settings there are two options that influence the behavior of the search:

- Live search (disabled by default)
- Search using glob pattern matching (disabled by default)

For more information, see the Settings chapter.
11.11 Sort Folder by...

11.12 Fast scroll

If the folder contents are sorted by file size, the preview will show the file sizes accordingly. The same applies to the modification date.
You can configure Cryptomator to your needs. This section provides an overview of the different settings.

12.1 General Settings

After pressing the three dots and clicking on *Settings*, you will find options to customize Cryptomator.
12.1. General Settings

General

Cloud services

Fingerprint

- Block app when obscured
- Screen security
- Keep vaults unlocked while editing files
- Live search

Style

Automatic (follow system)

Automatic locking

- When screen is disabled

Lock after

1 minute

Automatic photo upload
12.1.1 Cloud Services

This setting lists all cloud services. When pressing on a service, the authentication starts or if you’re already authenticated, you will be logged out.
12.1.2 Fingerprint

Note: This setting is only available if your device supports the fingerprint authentication.

With the toggle button in the right upper corner, the fingerprint will be generally enabled/disabled. Using the toggle button next to the vault, it will be enabled/disabled for this vault.
After enabling, you have to unlock the vault using the password.
Cryptomator Documentation, Release 1.6.0

12.1. General Settings

Biometric authentication

Activate biometric authentication

Confirm face unlock (if available)

Work

Photos

Password

Please wait...

Biometric login

Log in using your biometric credential

Touch the fingerprint sensor

Use vault password
To have access to the key stored in the keystore, you have to authenticate against the system using the fingerprint.

12.1.3 Block App When Obscured

Under certain circumstances, Cryptomator for Android may not respond to touches.

This is most often caused by apps which apply a color filter to the device. Examples are the apps Twilight or Blue Light Filter. When disabling or uninstalling such apps, Cryptomator will work again.

The reason for Cryptomator not working is that the user interface of Cryptomator is obscured. Whenever another app obscures Cryptomator, it could intercept the input done to Cryptomator or display a false UI tricking the user into doing stuff he does not want to do. For security reasons, Cryptomator is disabled by default when obscured. The Android documentation contains some more details.
Starting from version 1.3.0, this protection can be disabled in the settings. We rather recommend to use the app without a blue light filter because this is more secure.

If you want to disable protection, the blue light filter or any app obscuring Cryptomator has to be disabled one time. Afterwards, the settings can be opened and the option “Disable app when obscured” can be disabled. And then the relevant apps can be reenabled again.

To identify apps which could cause this, open the Android settings and navigate to Settings - Apps - Advanced (gear icon) - Draw over other apps. This will list the installed Apps and will show you which ones are allowed to draw over other apps. You can disable this for most apps (but not for system apps like the keyboard but this should not cause any problems).

If you see this dialog, some app is able to draw over Cryptomator:
12.1.4 Screen Security

Android provides the possibility to prevent the system and other apps from doing screenshots, screen recordings etc. while Cryptomator is active. This feature is very important because it prevents other apps from reading data across the screen.

This feature is enabled for all our views. For some devices, e.g. a Chromebook with a second display or to create a screenshot and disable it again, we made this option since the 1.3.9 configurable.

Read more: FLAG*SECURE

12.1.5 Style

You can choose between the following three styles:

- Automatic (follow system): follows the system specified in the Android settings
- Light: App shows in light mode
- Dark: App shows in dark mode
12.1. General Settings

- **General**
- **Cloud services**
- **Fingerprint**
 - Block app when obscured
 - Screen security
 - Keep vaults unlocked while editing files
 - Live search
- **Style**
 - Automatic (follow system)
- **Automatic locking**
 - When screen is disabled
 - Lock after
 - 1 minute
- **Automatic photo upload**
12.2 Search

You can use the magnifier inside the cloud node list to search for specific nodes. Thereby there are two settings:

- Live search (disabled by default)
- Search using glob pattern matching (disabled by default)

both are described in the following chapters.
12.2.1 Live Search

If this setting is enabled, the search mode is live. That means, the search starts immediately after entering the search pattern.

If it is disabled, you have to use the magnifier or the enter button in your keyboard to start the search.

12.2.2 Search using glob pattern matching

If this setting is enabled, you have to enter a glob pattern into the search bar.

If it is disabled, the beginning of the cloud node names must match the entered text. Upper and lower case is not relevant in this option.

12.3 Automatic Locking

If a vault is unlocked and Cryptomator isn’t active, the automatic locking timeout is counting down. After the timeout expires, all vaults get locked. You can choose between:

- 1 minute
- 2 minutes
- 5 minutes
- 10 minutes
- Never

When screen is disabled can be deactivated so that the vaults don’t get locked when the screen locks.

12.4 Automatic Photo Upload

If the Automatic photo upload is enabled, all photos taken will be marked for upload and after the specified vault gets unlocked again, the upload starts.

Under the setting Choose vault for upload, you can specify the target vault and folder in the vault where the images will be placed.

Which pictures will be tracked, depends on the Android version on your phone:

- Nougat (API level 24 or 7.x) and later: All images which Android adds to the gallery will be uploaded to the vault
- Pre-Nougat: Only the images created with the camera will be uploaded to the vault
12.5 Cache

Introduced in version 1.5.0, if enabled, all downloaded files will be cached (encrypted) on the file system. Further downloads will only verify with the server, that the cached file is still the latest version. If so it will not be downloaded again but directly retrieved from the file system. The cache is implemented using a least recently used mechanism, that means, the oldest entry will be overwritten if the max cache size is reached.

12.5.1 Cache Size Per Cloud

Using this setting, you can specify the total max cache size per cloud provider.

You can choose between the following options:

- 50 MB
- 100 MB
- 250 MB
- 500 MB
- 1 GB
- 5 GB

Note: The more memory is given to caching, the greater the convenience factor. However, this memory can be used up to the maximum on the system and is then no longer available.

12.5.2 Clear Cache

This setting will flush all cached files.

12.6 Support

If you have problems with the app you can enable the Debug mode. After reproducing the problem, you can disable the Debug mode again and Send log file.

12.7 Version

This setting displays the current version of this app.

The following sub settings are only available, if you’re using the APK-Store version of Cryptomator and not the PlayStore one.
12.7.1 Update Check Interval

Using the specified interval below, the app checks if the latest version is installed.

You can choose between the following options:
 • Once a day
 • Once a week
 • Once a month
 • Never

12.7.2 Check For Updates

This setting displays the timestamp of the latest update check. You can click on this setting to trigger a update check.
You can get Cryptomator for iOS on the App Store.

13.1 Requirements

Requires iOS 13.0 or later. Compatible with iPhone, iPad, and iPod touch.
14.1 Other File Provider

This option allows you to add a vault from any supported file provider. Default implementations by Apple are iCloud Drive and On My iPhone/iPad. Inside the Files app, you can also add custom connections to SMB-compatible servers.

If you have a lot of apps installed that include a file provider, you may notice that most of them are grayed out. This is because third-party file providers usually don’t support “picking folders”. To our best of knowledge, this is unsupported by Apple. You can find a technical discussion here.
15.1 Unlock Duration

With the vault setting “Unlock Duration”, you can specify for how long you want your vault to stay unlocked when idle. The following options are:

- Let iOS Decide Automatically
- 5 Minutes
- 10 Minutes
- 30 Minutes
- 1 Hour
- Indefinite

The default option is “Let iOS Decide Automatically”. Accessing Cryptomator via the Files app is possible via a so-called File Provider Extension. This extension has limited capabilities, e.g., it has a lower memory limit than regular apps. To free up memory, iOS may terminate Cryptomator at any time, which is basically the same as locking the vault since the key is held in memory.

This option has two consequences:

- There is no guarantee for how long your vault stays unlocked. Of course, while you’re accessing your vault, it’s highly unlikely that Cryptomator gets terminated.
- You’re responsible for locking your vault manually. Or if that’s not a concern of yours, you can just let iOS decide when Cryptomator is getting terminated.

In order to have a guarantee that your vault stays unlocked for a certain amount of time, the other options are available. By using one of these options, a copy of your key needs to be stored in the iOS keychain, as long as your vault is unlocked.

E.g., if you choose “1 Hour” and Cryptomator gets terminated by iOS within that time frame, your vault can automatically be unlocked again using the key from the iOS keychain. If the selected time frame has passed, the key will be removed from the iOS keychain and your vault will get automatically locked.

If you choose the “Indefinite” option, your vault will be kept unlocked until you have manually locked it.
Cryptomator for iOS is fully integrated into the Files app of iOS. In order to access your encrypted data, you have to use the Files app.

16.1 Enable Cryptomator in Files App

In order for Cryptomator to be listed in the Files app under “Locations”, you may have to enable Cryptomator first. Open the Files app and then:

1. Tap on the Browse tab in the lower right corner.
2. Tap on the (…) button in the upper right corner.
3. Tap on Edit.
4. Enable Cryptomator.
5. Tap on Done in the upper right corner.
16.1. Enable Cryptomator in Files App

Browse

Locations
- iCloud Drive
- On My iPhone
- Cryptomator
- Recently Deleted

Tags
- Red
- Orange
- Yellow
- Green
- Blue
- Purple

5. Done
You can configure Cryptomator to your needs. Access the settings by tapping the gear icon in the top left corner.

17.1 Support

If you have problems with the app, you can enable Debug Mode. After reproducing the problem, you should disable Debug Mode again and then Send Log File.
SHORTCUTS GUIDE

The Shortcuts integration of Cryptomator allows you to build different automations in the Shortcuts app. With that, you can automate recurring tasks quickly and easily.

For a shortcut to run smoothly, the vault must be unlocked during the execution of the shortcut. For automations, you should set the unlock duration to “Indefinite” in the settings of your vault.

In addition, you should know that some Cryptomator shortcut actions build on each other. For example, the “Save File” action requires a folder inside a vault as an input, which can be obtained using the “Get Directory” action.

18.1 Automatic Photo Upload

With Cryptomator’s integration in Shortcuts, you can build an action to automatically upload your photos to a Cryptomator vault. You can either follow these step-by-step instructions or use the following shortcut to get started:

https://www.icloud.com/shortcuts/90ae0e36dda44da3a39c9070ae097a92

Step 1: Create new shortcut
- Open the Shortcuts app on your iOS device.
- Tap on the “+” at the top right to create a new shortcut.

If the Shortcuts app is not installed, download it from the App Store.

Step 2: Add “Find Photos” action
- Select “Add Action”.
- Under the tab “Apps”, select “Photos”.
- Select the action “Find Photos”.

You can customize this action to your needs by adding various filters or to limit the number of photos to be selected.

Step 3: Add “Get Directory” action
- Add the “Get Directory” action from Cryptomator.
- Specify the vault and the path of the folder where your photos should be stored.

Important: It will check if the folder exists in your vault. If it doesn’t exist, the action will fail and no photos will be uploaded.

Step 4: Add “Save File” action
We’re going to add the “Save File” action from Cryptomator. But since this action only saves a single file (or in this case, photo), we need to add wrap this action around a different action first.
- Add the “Repeat with Each” action, which you can find under the “Categories” tab and then under “Scripting”.
• Add the “Save File” action from Cryptomator.

• Make sure that the two variables are correctly set: The image you want to save and the folder from the “Get Directory” action in step 3.

In order to set these variables, you may have to tap on the “File” field, then “Select Magic Variable”, and tap on “Repeat Item”.

Congratulations, you have just created your first shortcut with Cryptomator actions!

Hints:

1. To fully automate your photo upload, you should run a shortcut using an automation. To do this, create a new automation in the Shortcuts app. You don’t have to create the whole shortcut again. You can just add the action “Execute Shortcut” and select the previously created shortcut.

2. Executing a shortcut with a lot of photos (>1,000) can take much longer than executing it with 2x500 photos. To our knowledge, this seems to be a limitation of the Shortcuts app. Therefore, try to limit the number of photos using the available filters. One possible filter is to consider only the photos of the last 2-7 days for a shortcut that is executed daily.
Cryptomator was designed to solve privacy issues when saving files to cloud storages.

The risk that the cloud provider or third parties access the data stored in the cloud without permission is mitigated. Only people who know the vault password are able to read the files in the vault or change the file contents undetected. This is true for file contents as well as for filenames.

To allow a working synchronization with the cloud, there are some meta information that Cryptomator does not encrypt. These are:

- access, modification, and creation timestamp of files and folders,
- number of files and folders in a vault and in the folders, and
- size of the stored files.

In addition, you have to keep in mind what Cryptomator is not. Protection of the files on the local computer is not the focus of Cryptomator. Cryptomator is not a complete replacement for other encryption tools based on container files if the aforementioned meta information should be encrypted. Cryptomator does not provide protection if programs create backup copies of the encrypted files when working with them. Such files are not detected by Cryptomator and may remain on the computer even after unlocking a vault. Cryptomator cannot provide protection if the local computer is infected with malware which reads entered passwords and file contents (e.g., files in an unlocked vault).

To protect against such risks, other methods, like complete disk encryption, immediate installation of system and software updates, and the use of applicable antivirus software, is required.
20.1 Virtual Filesystem

Cryptomator provides a virtual drive. Add, edit, remove files as you’re used to with just any disk drive. Files are transparently en- and decrypted. There are no unencrypted copies on your hard disk drive. With every access on your files inside the virtual drive, Cryptomator will en- and decrypt these files on-the-fly.

Currently Dokany or WinFsp (on Windows) and FUSE (on macOS and Linux) are our frontends of choice. If they’re not available on your system, Cryptomator will fall back on WebDAV, as it is supported on every major operating system. WebDAV is an HTTP-based protocol and Cryptomator acts as a WebDAV server accepting so-called loopback connections on your local machine only.

Whenever your file manager accesses files through this virtual drive, Cryptomator will process this request via the following layers.

20.2 Vault Configuration

Every vault must have a vault configuration file named vault.cryptomator in the root directory of the vault. It is a JWT containing basic information about the vault and specification what key to use. The JWT is signed using the 512 bit raw masterkey.

This is an example of an encoded vault configuration file:

```
eyJraWQiOiJtYXN0ZXJrZXlmaWxlOm1hc3RlcmtleS5jcnlwdG9tYXRvciIsInR5cCI6IkpXVCJ9.
eyJmb3JtYXQiOjEzNzA5OTIzNjA1MDB9.
Ijlu4dHb3fqB2fAk91f8G8zyEXc70LB-5m9aNx0EXIQ
```

The decoded header:

```
{
"kid": "masterkeyfile:masterkey.cryptomator", /* URI of where to get the key */
"typ": "JWT",
"alg": "HS256" /* current implementations also support HS384 and HS512 */
}
```

The decoded payload:

```
{
"format": 8, /* vault format for checking software compatibility */
"shorteningThreshold": 220, /* how many characters in ciphertext filenames */
"jti": "ce976f7a-7b92-4cc0-b4c1-c74a6aa17cf5", /* random UUID to uniquely identify the vault */
"cipherCombo": "SIV_CTRMAC" /* currently only SIV_CTRMAC is supported */
}
```

When opening a vault, the following steps have to be followed:
1. Decode vault.cryptomator without verification.
2. Read kid header and, depending on its value, retrieve the masterkey from the specified location.
3. Verify the JWT signature using the masterkey.
4. Make sure format and cipherCombo are supported.

20.3 Masterkey Derivation

Each vault has its own 256 bit encryption as well as MAC masterkey used for encryption of file specific keys and file authentication, respectively.

These keys are random sequences generated by a CSPRNG (Cryptographically secure pseudorandom number generator). We use SecureRandom with SHA1PRNG, seeded with 440 bits from SecureRandom.getInstanceStrong().

Both keys are encrypted using RFC 3394 key wrapping with a KEK (Key-encryption key) derived from the user’s password using `scrypt`.

```plaintext
encryptionMasterKey := createRandomBytes(32)
macMasterKey := createRandomBytes(32)
kek := scrypt(password, scryptSalt, scryptCostParam, scryptBlockSize)
wrappedEncryptionMasterKey := aesKeyWrap(encryptionMasterKey, kek)
wrappedMacMasterKey := aesKeyWrap(macMasterKey, kek)
```

The wrapped keys and the parameters needed to derive the KEK are then stored as integers or Base64-encoded strings in a JSON file named `masterkey.cryptomator`, which is located in the root directory of the vault.

```plaintext
{
  "version": 999,  // deprecated, vault format is now specified in the vault configuration
  "scryptSalt": "QGk...jY=",
  "scryptCostParam": 16384,
  "scryptBlockSize": 8,
  "primaryMasterKey": "QDi...Q==",  // wrappedEncryptionMasterKey
  "hmacMasterKey": "L83...Q==",  // wrappedMacMasterKey
  "versionMac": "3/U...9Q="  // HMAC-256 of vault version to prevent undetected downgrade attacks
}
```

When unlocking a vault the KEK is used to unwrap (i.e. decrypt) the stored masterkeys.
20.4 File Header Encryption

The file header stores certain metadata, which is needed for file content encryption. It consists of 88 bytes:

- 16 bytes nonce used during header payload encryption.
- 40 bytes AES-CTR encrypted payload consisting of:
 - 8 bytes filled with 1 for future use (formerly used for file size) and
 - 32 bytes file content key.
- 32 bytes header MAC of the previous 56 bytes.

```plaintext
headerNonce := createRandomBytes(16)
contentKey := createRandomBytes(32)
cleartextPayload := 0xFFFFFFFFFFFFFFFF . contentKey
ciphertextPayload := aesCtr(cleartextPayload, encryptionMasterKey, headerNonce)
mac := hmacSha256(headerNonce . ciphertextPayload, macMasterKey)
```

![Diagram](image.png)

Fig. 1: *Random per file change

20.5 File Content Encryption

This is where your actual file contents get encrypted.

The cleartext is broken down into multiple chunks, each up to 32 KiB + 48 bytes consisting of:

- 16 bytes nonce,
- up to 32 KiB encrypted payload using AES-CTR with the file content key, and
- 32 bytes MAC consisting of:
 - file header nonce (to bind this chunk to the file header),
 - chunk number as 8 byte big endian integer (to prevent undetected reordering),
 - nonce, and
 - encrypted payload.

Afterwards, the encrypted chunks are joined preserving the order of the cleartext chunks. The payload of the last chunk may be smaller than 32 KiB.

```plaintext
cleartextChunks[] := split(cleartext, 32KiB)
for (int i = 0; i < length(cleartextChunks); i++) {
    chunkNonce := createRandomBytes(16)
ciphertextPayload := aesCtr(cleartextChunks[i], contentKey, chunkNonce)
mac := hmacSha256(headerNonce . bigEndian(i) . chunkNonce . ciphertextPayload, macMasterKey)
ciphertextChunks[i] := chunkNonce . ciphertextPayload . mac
```

(continues on next page)
20.6 Directory IDs

Each directory has a unique ID that is required during filename encryption. For historical reasons, the directory ID is a string, even though any byte sequence would do the job.

The directory ID for the root directory is the empty string. For all other directories, it is a random sequence of at most 36 ASCII chars. We recommend using random UUID (Universally unique identifier).

```plaintext
dirId := createUuid()
```

When traversing directories, the directory ID of a given subdirectory is processed in four steps to determine the storage path inside the vault:

1. Encrypting the directory ID using AES-SIV in order to encrypt directory hierarchies.
2. Creating a SHA1 hash of the encrypted directory ID in order to get a uniform length.
3. Encoding the hash with Base32 to get a string of printable chars.
4. Constructing the directory path out of the Base32-encoded hash.

```plaintext
dirIdHash := base32(sha1(aesSiv(dirId, null, encryptionMasterKey, macMasterKey)))
dirPath := vaultRoot + '/d/' + substr(dirIdHash, 0, 2) + '/\' + substr(dirIdHash, 2, 30)
```

Regardless of the hierarchy of cleartext paths, ciphertext directories are always stored in a flattened structure. All directories will therefore effectively be siblings (or cousins, to be precise).
20.7 Filename Encryption

The cleartext name of a file gets encoded using UTF-8 in Normalization Form C to get a unique binary representation.

Cryptomator uses AES-SIV to encrypt names. The directory ID of the parent folder is passed as associated data. This prevents undetected movement of files between directories.

![Diagram of encryption process](image)

Fig. 3: Unencrypted directory ID of the parent dir as described above

\[
ciphertextName := \text{base64url}(\text{aesSiv(cleartextName, parentDirId, encryptionMasterKey, macMasterKey)}) + \cdot\text{c9r}
\]

Depending on the kind of node, the encrypted name is then either used to create a file or a directory.

- Files are stored as files.
- Non-files are stored as directories. The type of the node then depends on the directory content.
 - Directories are denoted by a file called `dir.c9r` containing aforementioned directory ID.
 - Symlinks are denoted by a file called `symlink.c9r` containing the encrypted link target.
 - Further types may be appended in future releases.

Thus, a cleartext directory structure like this:

```
<table>
<thead>
<tr>
<th></th>
<th>File.txt</th>
<th>SymlinkToFile.txt</th>
<th>Subdirectory</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>...</td>
</tr>
</tbody>
</table>
```

Becomes a ciphertext directory structure like this:

```
<table>
<thead>
<tr>
<th></th>
<th>d</th>
<th>BZ</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>R4VZSS5PE7TU3PMFIMCN5GJRNBDWA</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5TyvCyFZ55sRtfr1v**83ucADQ==.c9r # File.txt</td>
<td></td>
</tr>
<tr>
<td></td>
<td>FHTa55bH*sUfVDbEb0gTL9h88hho.c9r # Subdirectory</td>
<td></td>
</tr>
<tr>
<td></td>
<td>dir.c9r   # contains dirId</td>
<td></td>
</tr>
<tr>
<td></td>
<td>gLeOGMCN358+UBf2Qk9oWCQJ.c9r # SymlinkToFile.txt</td>
<td></td>
</tr>
<tr>
<td></td>
<td>symlink.c9r # contains link target</td>
<td></td>
</tr>
<tr>
<td></td>
<td>FC</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2KZRLZUODUUUTYAA4457CSBPZX5A77 # contains contents of Subdirectory</td>
<td></td>
</tr>
</tbody>
</table>
```

(continues on next page)
20.8 Name Shortening

Note: This layer doesn’t provide any additional security. Its sole purpose is to maximize compatibility.

To maximize compatibility, we need to make sure the ciphertext names don’t exceed a length of 255 chars. As some cloud sync services might want to add a suffix to a file in case of conflicts, we decided to use at most 220 chars.

If an encrypted name (including its .c9r extension) exceeds these 220 chars, we will instead create a directory named after its much shorter SHA-1 hash and the .c9s extension. Additionally, we will create a reverse-mapping file named name.c9s containing the original file inside of this directory.

```plaintext
if (length(ciphertextName) > 220) {
    deflatedName := base64url(sha1(ciphertextName)) + '.c9s'
    inflatedNameFilePath := deflatedName + '/name.c9s'
    fileContentsPath := deflatedName + '/contents.c9r'
    symlinkFilePath := deflatedName + '/symlink.c9r'
    dirIdFilePath := deflatedName + '/dir.c9r'
}
```

Again, we have to distinguish the kind of a node.

- Non-files (such as symlinks or directories) are stored as a directory anyway. Nothing changes for them.
- Files, on the other hand, need a different place to store their contents. Therefore, we introduce the contents.c9r file inside the .c9s directory.

A vault containing several nodes with very long names might result in a ciphertext structure like this:
21.1 Sharing of Vaults

Always be careful when sharing your vault with other people.

In general, keep your vault password secret. Nobody except yourself should know the vault password. Only when you use a vault together with other people, they may know your vault password. Keep in mind that other people could pass on – with or without intent – the vault password. Only share your vaults with people you trust.

If you share a vault with others, do not communicate the vault password on an insecure channel. Tell the password in person, use encrypted email or messengers or other similar secure means.

21.2 Good Passwords

Bad passwords can be cracked easily when using computers. Plenty of recommendations exist for secure passwords. Some of these are:

- A password should not contain public or personal information like the name of your pet, date of birth, or username.
- A password should be long.
- A password should not be an existing word or a combination of few words. It should be a combination of characters or words that is as random as possible.
- For each purpose, a unique password without similarities to other passwords should be used.

If you fulfill these requirements, you quickly reach a point where remembering the passwords gets impossible. Thus, we recommend to use a password manager to generate and store the passwords. By doing so, you only have to remember a few or a single secure password. Otherwise, we recommend to use at least 10 characters, ideally use sentences instead of words.
Under some circumstances, Cryptomator refuses to automatically migrate a vault to a newer format. In this case, your vault will remain untouched, so you can continue using it with the previous version.

To upgrade to the latest version, you can perform a migration manually:

1. Unlock the vault with the previous version of Cryptomator that you have used. You can find downloads of older versions on our GitHub site.
2. Copy all files from this vault onto a temporary storage location on your computer. Be aware that these files are decrypted.
3. Once finished, lock your vault and quit Cryptomator. Now install the latest version of Cryptomator.
4. Create new vault with the latest version of Cryptomator and unlock it.
5. Copy all files from step 2 into the new vault.

Note: One reason why automatic migration is impossible might be the fact that your vault is stored in a location that limits filename or path lengths, such as:
 - Network drives on Windows, such as WebDAV mounts
 - eCryptfs-encrypted volumes on Linux

In this case, during step 5, you may encounter warnings indicating that you can not encrypt files due to such length limitations. Feel free to simply change the name of any affected files.
23.1 How Can You Help Us?

Cryptomator is an open source project and wouldn’t be possible without contributions from users who support the idea.

There are several ways you can help us:
- By reporting bugs or feature requests on GitHub,
- By discussing solutions in our community,
- By contributing patches or features via pull requests,
- By helping us with the localization of Cryptomator,
- By improving this documentation,
- By becoming a sponsor,
- Or by donating to the maintainers.

23.2 Before You Start

If you plan to help, please stick to our Code of Conduct.

Our code is licensed under GPLv3 and this documentation under CC-BY-SA 4.0. If you contribute either, your grant us the rights to publish your contributions under those licenses. Also you have to digitally sign a Contributor License Agreement (CLA). This is required to protect the maintainers of Cryptomator from legal problems with patent or copyright infringement. The CLA signature process is triggered by your first pull request automatically. You will be asked to authenticate with your GitHub account and your username will be stored even if you revoke any activity on GitHub.
Cryptomator vaults need to adhere to a structure and format (as described in Security Architecture) that may change over time. In order to identify the correct format, the masterkey file contains a version number, which represents the vault format.

24.1 Format 8

Introduced in Cryptomator 1.6.0 on 2021-10-19. The following changes are:

- Decoupled vault configuration from key derivation by introducing new vault configuration file named vault.cryptomator. It is a JWT containing basic information about the vault and specification what key to use.
- version inside masterkey.cryptomator is now deprecated.

24.2 Format 7

Introduced in Cryptomator 1.5.0 on 2020-04-16. The following changes are:

- Added file extension (*.c9r and *.c9s) to all encrypted files and directories. Certain cloud storage services have issues with files without an extension.
- Encrypted directories are now actually directories. Directory file is now inside of that with the fixed name dir.c9r.
- Encrypted symlinks are now directories. Symlink file is now inside of that with the fixed name symlink.c9r.
- Files and directories with shortened filenames are now directories (identifiable by the .c9s suffix). Mapping file with the long filename is now inside of that with the fixed name name.c9s. If it’s a regular file, the content file has the fixed name contents.c9r.
- Removed directory m because mapping files for shortened filenames are now in d as well.
- Filenames are encoded with base64url so that name shortenings are less likely.
- Increased ciphertext filename threshold to 220 characters.

This is an example of the vault structure:

```
  .  d  BZ
  R4VZSS5PEF7TU3PMFIMON5GJRNBDA
  - S5tvCyF255aRtfrIv__83ucADQ==.c9r  # regular file
  - FHTa55bH_sUrFDBBEd0gTL9h28nho.c9r  # irregular file...
  - dir.c9r  # ...which is a directory
  - gLeOGMCN358_UBf2Qk9cWCQ1.c9r  # irregular file...
```

(continues on next page)
symlink.c9r # ...which is a symlink
1jtxsXtReTy6bAAuxzLPv9T0k2vg=.c9s # shortened name...
c9r contents.c9r # ...which is a regular file
c9s name.c9s # ...mapping to this full name
q2nx5XeNcHvKFD4mxYNgwQ=.c9s # shortened name...
dir.c9r # ...which is a directory
c9r name.c9s # ...mapping to this full name
u_JJCJE-T41H-EBYASUp1u3p7mA=.c9s # shortened name...
c9s name.c9s # ...mapping to this full name
symlink.c9r # ...which is a symlink
...

FC
ZKZRLZUODUYYTYA4457CSBPZX5A77
...

masterkey.cryptomator
masterkey.cryptomator.DFD9B248.bkup

24.3 Format 6

Introduced in Cryptomator 1.3.0 on 2017-07-01. The following changes are:

• Password is normalized in NFC.

24.4 Format 5

Introduced in Cryptomator 1.2.0 on 2016-09-19. The following changes are:

• Dropped file size obfuscation support.

File sizes can be determined in $O(1)$ instead of having to read and decrypt the file header. This allows showing file sizes in the directory listing without having to download each file first. The file size in the header is now unused and filled with $0xFFFFFFFFFFFFFFFF$.

24.5 Format 4

Introduced in Cryptomator 1.1.1 on 2016-07-08. The following changes are:

• Directories now have 0 (zero) prefix instead of a _ (underscore) suffix.

Directories are now stored with different names to avoid conflicts with the naming scheme of certain cloud storage services in case of synchronization conflicts.

This is an example of the vault structure:

```plaintext
... d
  R4VZSS5PEF7U3PMF3MON5GJRNBDWA
    0USJ7VD36K7U2HRAYM6FTAB2GZN6LUN63VRH5MDVQZ433VZ7EPSM2LPJHFL6
      0YWVRC6C6EC3ZEC2UJR7BGYERU3L6G6R7QDBGMZ7EQ553XQY24------
        ...
          YMBBP7RC6FFX6ZN4YBLN4WDX61IBTMXXHDQ5EZNTQY7LMZOGDT22EY=
            ZTNHMC3OUN62SNIR72ESLQSQDM2LQYQ42XKEKDSYYX511---
              ...
              ZKZRLZUODUYYTYA4457CSBPZX5A77
```

(continues on next page)
24.6 Format 3

Introduced in Cryptomator 1.0.0 on 2016-03-09.

Vault format 3 is basically the official “first” version. To be exact, it was actually introduced in Cryptomator Beta 0.11 on 2016-03-03. Vault formats 1 and 2 were only used in beta versions of Cryptomator.

This is an example of the vault structure: