Cryptomator Documentation

Release 1.5.0

Cryptobot

Jul 13, 2021
Cryptomator encrypts your data quickly and easily, so you can safely upload it to your favourite cloud service. If you’re a first time user, you will probably want to follow this guide on how to get started. If you are interested in the security of Cryptomator, have a look at our security section.
CHAPTER 1

Setup

You can start using Cryptomator by simply downloading it for free from our downloads page. Please choose the appropriate download for your operating system and check the minimum system requirements.

**Note:** You can find older releases as well as detailed changelogs in the GitHub releases section.

After downloading, the installation process depends on your operating system.

### 1.1 Windows

Launch the downloaded `.exe` file and follow the setup as usual. We recommend also installing **Dokany**, which is included in the installer.

**Note:** If you are updating Cryptomator by installing a new version and additionally want to update Dokany, you need to remove the old Dokany version first, restart the PC, and then execute the Cryptomator installer.

### 1.2 macOS

Open the downloaded `.dmg` file, accept the license, and drag & drop Cryptomator onto the Applications folder. We recommend also installing **FUSE for macOS**, which is linked from inside the `.dmg` file.

**Note:** In case the application is blocked by Gatekeeper, you need to change your Gatekeeper settings.

### 1.3 Linux

The primary option of using Cryptomator on Linux is via the AppImage. After you’ve downloaded the `.appimage` file, you simply need to make it executable and you can then run it.
If you are familiar with PPA or AUR, you can choose one of these options to install Cryptomator. The coordinates are available on our download page.
With Cryptomator you can create encrypted *vaults*. Each vault is protected by a password and can contain as many files and folders as you like.

When you’re a first-time user of Cryptomator, you obviously don’t have any vaults yet. If you start the application, you will be greeted with the following screen:

By clicking on the `Add Vault` button in the lower left corner of the window, you can create a new vault.
Adding Vaults

If you want to add a new vault, you have essentially two options:

1. If you want to create a vault yourself, choose **Create New Vault**.
2. If you already have a vault, for example because someone shared a vault with you via a cloud storage service, you can instead choose **Open Existing Vault**.
3.1 Create a New Vault

If you chose to create a new vault, the wizard will now guide you through the vault creation process.

3.1.1 1. Choose a Name

You start by simply choosing a name for your vault.
3.1.2 2. Choose a Storage Location

Next, choose where you want to save your vault. Since a vault is just a directory containing encrypted files, you need to store it somewhere. Usually this would be inside your cloud-synced directory. But you can choose any storage location, you like.

Keep in mind that Cryptomator is not a sync tool. You still need the software from your favourite cloud storage service.

In this example I want to encrypt files that get synchronized via Dropbox.

---

**Note:** Your vault name will be used as a directory name on your file system. Make sure not to use any characters that might cause problems with your setup. Especially if you want to share the vault via the cloud with other users, keep in mind that these users might use different software or operating systems that might not cope well with special characters.
3.1.3 3. Choose a Password

Now it is time to choose a good password for your vault. Cryptomator requires at least 8 characters but we recommend you to use a longer phrases such as pass-sentences. The bar below the password field estimates the strength of your password.
Warning: Nobody except for yourself knows this password and other than you might know it from online services, nobody can “reset” your password for you.

Note: If you plan to share this vault with a different person, you will both need to know the password. In this case, choose a password that is different from anything you tend to only use yourself. To share the password, use an encrypted messenger or any other secure means of communication.

Since we can not reset your password, we recommend you to create an additional recovery key.

3.1.4 4. Show Recovery Key (optional step)

If you chose to create a recovery key in the previous step, it will now be displayed. Make sure not to lose it. Ideally make a hard copy of it.
Warning: Keep the recovery key secret. Remember, just like your password, its purpose is to gain access to your vault!

For more details, take a look at our chapter about *how to use a recovery key*.

**3.1.5 5. Done**

That’s it. You have successfully created a new vault.

You can now unlock this vault using your password and start adding sensitive files to it.
3.2 Open an Existing Vault

If you chose to open an existing vault, all you need to do is to locate the `masterkey.cryptomator` file of the vault you want to open.

**Note:** If you created the vault on another device and cannot find it or its masterkey file, make sure that the directory containing the vault is properly synchronized and fully accessible on your device.
Accessing Vaults

Once you have added a vault to Cryptomator, you will probably want to unlock it, so you can start adding files.
4.1 Unlocking a Vault

To unlock the selected vault, click on the large Unlock button in the center of Cryptomator window. You will then be prompted for your vault’s password:

![Unlock Vault Dialog](image)

**Note:** By checking the “Save Password” checkbox, the password will be stored in your operating system’s keychain.

**Warning:** Only store your password on trusted devices. Anyone with access to this computer will be able to access your vault, if the password is stored in the system keychain.

If your password is correct a confirmation is displayed. You can either just close this Window by clicking Done or click Reveal Vault in order to show your unlocked vault in your file manager.
4.2 Working with the Unlocked Vault

After unlocking, your vault’s contents will become available as a virtual drive on your PC. This means, that you interact with your confidential files in the same way as with any other hard drive or USB stick.

If you can not find the unlocked vault in your systems file manager (Windows Explorer, Finder, ...), you can always click on Reveal Drive in your Cryptomator window:
Note: On Windows, you can choose the drive letter of the virtual drive for each vault via the advanced vault options.

4.3 Locking a vault

To lock your vault again simply click Lock and your data will be protected and encrypted again.
4.3. Locking a vault

CRYPTOMATOR

My Vault
~/.Dropbox/My Vault

My Vault
~/.Dropbox/My Vault

Unlock

Vault Options

Add Vault
Each Cryptomator vault is secured by a password. The security of your vault depends directly on the strength of its password, so choosing a strong password is key.

Additionally for each vault a unique recovery key can be derived. This key ensures that if you forget your password, you are able to create a new one. It is a human readable form of your decrypted masterkey and therefore independent of the current vault password and highly confidential.

This section explains how to change a password for a vault, show its recovery key and reset the password to a new one. All actions are done in the Password tab of the vault options. You can access it over the main window by selecting the vault in question, lock it if necessary and then open its Vault Options.

### 5.1 Change Password

You can change the password of an already existing vault. The only thing you need is to remember the current one.
**Note:** The password is used to derive a KEK, which is then used to encrypt further keys. The KEK changes, but the keys encrypted with the KEK will stay the same. The actual files will not get re-encrypted, meaning you cannot upgrade a weak passphrase to a stronger one once the data has been synced to a service that allows recovery of older versions of the masterkey file.

If you like to encrypt your vault files with a new, stronger password, you need to create a new vault and drag the data from the old to the new one. Make sure to wipe all backups of the old vault afterwards.

To do so, click on the **Change Password** button in the **Password** tab of the vault options. In the opened window, you see three text input fields:

1. In the first you need to enter the current password of the vault.
2. The second one takes the new password in and as already said, we suggest to follow the creation rules for **good passwords**.
3. In the third for confirmation you need to enter the new password again.

In order to proceed, you need to confirm what you are doing by selecting the checkbox.

To finish the workflow and really change the password, click now on the **Change** button.

**Note:** Only if the second and third text input fields match and the checkbox is selected, the **Change** button is activated.

### 5.2 Show Recovery Key

It is not a problem, if you missed to display the recovery key during vault creation. You are still able to derive it and view it at a later point in time. To increase security, Cryptomator does not store it on your hard drive and always derives it on the fly.
Warning: Bear in mind that due to the ability of the recovery key to reset the current password, it is highly confidential. Ensure that only trusted persons have access to it and keep it at a safe spot.

To do so, click on the Display Recovery Key in the Password tab of the Vault Options and enter your password. A new window will open. It shows a sequence of words inside a text field. This sequence is the recovery key of the vault.

You can copy it to your clipboard or print it to paper. If you are finished, close the window with the Done button.

5.3 Reset Password

If you forgot the password for a vault, but saved the recovery key somewhere external, you are able to define a new password and gain access to the vault again.

Navigate to the Password tab in the vault options and click the Recover Password button. A new prompt is opened, asking to insert your recovery key into the shown text box. Enter it there by copying it from a file or typing.

Note: If you printed your recovery key on paper or stored it somewhere where you cannot copy it, Cryptomator offers you an auto completion feature for insertion. Type a letter and see if the shown word matches your key part. If so, you can press tab or right arrow key to auto complete the word. Otherwise enter more letters, the suggestion will change accordingly.
If the recovery key is valid, Cryptomator indicates this by a small message and activates the Next button.
**Warning:** By design of the recovery mechanism, *any* valid recovery key is accepted. But only the one derived from the vault resets the vault password in a way such that the your data is accessible afterwards. **If you use a different recovery key, the data already stored in the vault will be inaccessible.** It can be made accessible again by re-running the recovery mechanism with the original and correct recovery key.

In the last step you need to assign a new password to your vault. It is the same as during *vault creation* except that no new recovery key is generated. As already noted there, read the suggestion for choosing a *good password.*

Finish the dialog by entering the same password again and clicking the **Done** button. You can unlock your vault now with the new password.

**Note:** Since the recovery key stays the same, don’t discard it and put it to a safe location again.
Chapter 6

Vault Mounting

After a vault is unlocked, it must be integrated into the system to be accessible for you. Cryptomator uses three different technologies (called adapters) for this integration:

1. **WebDAV** - a standardized protocol to manage directories and resources
2. **Dokany** - a windows specific driver for a deeper system integration
3. **FUSE** - a linux specific kernel module for a deeper system integration, also available for macOS

Each combination of operating system and adapter has its own set of settings and its benefits & drawbacks.

### 6.1 General Adapter Selection

Cryptomator only uses one adapter type to serve all your unlocked vaults. If you want to change it or only want to know which one is currently used, open the Preferences by clicking the gears symbol in the upper right corner of the main window and change to the Virtual Drive tab.

You can choose between WebDAV and, depending on your system, Dokany (Windows) or FUSE (linux, macOS).

**Note:** Dokany/FUSE may not be visible for selection. This means that Cryptomator is unable to detect a valid installation of them.

WebDAV has additional options for configuration:

1. **WebDAV Port** - Always present, it shows the port over which the WebDAV adapter communicates with itself.
2. **WebDAV scheme** - TODO

### 6.2 Options applicable to all Systems and Adapters

In this section mount options are described which are present on all operating systems and with all adapter types. Currently there is only on option, namely opening a vault in Read-Only mode. If the checkbox is set, you can unlock the vault, browse through its content and read or copy its files, but you cannot change or modify anything inside the vault.
6.3 WebDAV-specific options

WebDAV is a communication protocol to perform operations between a client (you) and a server (your computer) on directories and resources. Even though this protocol was designed for remote access, Cryptomator uses it only locally to display your files and allows you to work with them.

6.3.1 Windows
6.3.2 MacOS
6.3.3 Linux

6.4 Dokany-specific options

6.5 FUSE-specific options

6.5.1 MacOS
6.5.2 Linux
A vault is the fundamental object in Cryptomator. Like the term suggests, it represents the single location where all files inside this vault are stored encrypted. From the perspective of your operating system it is a normal directory containing at least two files and one directory:

### 7.1 Remove Vaults

You can remove a vault from the vault list by right clicking on the list entry. This is only possible while the vault is locked.

**Note:** By removing a vault from this list, it is not deleted from your filesystem. To irrevocably get rid of the vault, you can simply delete the vault directory (which contains your `masterkey.cryptomator` and the `d` directory) using your normal file manager.

### 7.2 Reorder Vaults

You can change the order of your vaults by dragging them to the desired position.

### 7.3 Vault Options

Each vault has an own set of settings which can be viewed and customized in the vault options window. To open it, select in the main window the *locked* vault in question and click the *Vault Options* button with the gear.

The options are divided in three categories:

1. General - Options not fitting into another category

You can select here if the vault is unlocked as soon as Cryptomator starts.
2. Mounting - All options about where and how you can access your unlocked vault

3. Password - Options and actions regarding your vault password and the recovery key
For **Mounting** and **Password** we refer to the regarding sections.
Setup

8.1 Requirements

Requires Android 4.3 or later.

8.2 Installation

You can get Cryptomator for Android on Google Play or using our APK Store. As for the functionality of Cryptomator, the application does not differ in the different installation types. The APK-Store variant of Cryptomator was created to serve users who do not have Google PlayStore installed on their Android device. If you have a Google PlayStore on your device, we recommend using the PlayStore version of Cryptomator as well.

The license to the App and also the app itself can be downloaded from our APK-Store. The download is a so-called APK (Android application package), which is an installation archive. Install the app by simply clicking on the APK. It is possible that the app in which you clicked on the APK is asking for “Install from Unknown Sources” permission, this is normal and must be activated for a short time (it is recommended to remove the permission afterwards).

After Cryptomator is installed, you have to enter the license you purchased from https://cryptomator.org/android/. This can be done by copying and pasting the license into the field or by clicking on the link starting with cryptomator://license/YOUR_LICENSE_KEY.

For the technical people who also use ‘adb’ you can enter the following in the console: adb shell am start -W -a android.intent.action.VIEW -d "cryptomator://license/YOUR_LICENSE_KEY" org.cryptomator
CHAPTER 9

Cloud Management

Cloud services

- Sign out from Dropbox
  Cryptomator Skymatic

- Sign out from Google Drive
  test.cryptomator@gmail.com

- Sign out from OneDrive
  Julian Raufelder

- WebDAV connections

- Local storage locations
In “Cloud Services”, you can create or edit the connection between the Cryptomator app and your storage provider accounts.

Please enter the credentials for your provider account or in case of Google Drive choose your account. If your authentication was successful, some of the providers might ask you to grant Cryptomator access permission to your online files. Please allow this permission.

In Google Drive, OneDrive and Dropbox you can only create one connection between your cloud storage account and the Cryptomator app. You can’t connect to (for example) two different Dropbox accounts.

If the provider requested permission to access your online files you can remove Cryptomator permissions from your online storage account at any time. Please keep in mind that Cryptomator then cannot connect to your vault anymore.

### 9.1 Login Dropbox

3:17

[Image: https://www.dropbox.com/1/connoct]

Sign in to Dropbox to link with Cryptomator for Android

Sign in with Google

—or—

Email

Password

This page is protected by reCAPTCHA, and subject to the Google Privacy Policy and Terms of Service.

Sign In

Forgot your password?
Cryptomator for Android would like access to the files and folders in your Dropbox. Learn more

- Cancel
- Allow

Signed in as: julian.raufelder@skymatic.de
9.2 Login Google Drive

Choose account for Cryptomator

- geselthyn@googlemail.com
- test.cryptomator@gmail.com
- Add account

CANCEL OK
9.3 Login OneDrive

Sign in

Email, phone, or Skype

No account? Create one!

Can't access your account?

Sign-in options

Back  Next
9.4 Login WebDAV

You can find [here](#) a list of the most common WebDAV URLs.
Click here to add locations
9.4. Login WebDAV
Note: While creating the WebDAV connection, please make sure to add the root of the accessible storage and don’t navigate directly into the vault.

9.5 Login Local Storage

There can be used two types of local storages:

- “Default storage”: This is the default internal storage of the android phone.
- “Custom location”: Using custom locations you can access a vault stored on e.g. a removable device like a
SD card

The following pictures describes how to setup a custom location to access vaults stored on the SD card:

Click here to add locations
9.5. Login Local Storage
After creating the custom location, you can access it by clicking on the name of the location to add the vault or create a new vault.

**Note:** If you use a custom location please make sure to add the root folder of the storage like described in the pictures and don’t navigate directly into the vault.
10.1 Create a New Vault

To create a new vault, click on the plus sign and choose Create new vault in the next screen.
Note: If you already have a vault created with the desktop app and just want to add this vault to your mobile app, please select go to chapter Add Existing Vaults.

You will now be prompted to select the cloud provider where you want to store your vault.

Choose between Dropbox, Google Drive, OneDrive (works also with OneDrive for Business) or Local storage (which means your local device with all attached devices).

If your desired provider is not listed and offers WebDAV access, please select WebDAV as the storage location of your vault. Here you can find WebDAV URLs of Common Cloud Storage Services.

10.1. Create a New Vault
If not already done, you have to create the connection between the Cryptomator app and your storage provider account. Please follow the instructions in the Cloud Management chapter and continue later here.

Now that you’ve established a connection, you’ll add the existing vault.

In the first step, please enter a name for your new vault. This name will also be the folder name of your vault files in your online storage.
Then choose the location on your cloud storage where you want to have your encrypted vault files stored.
And last but not least, create a **secure** password for your vault. Basically, you have the whole Unicode for choosing a password including non-printable characters.
Warning: You have to remember this password at all times because there is no way to access your data if you forget your password. Choose a good password to make your data secure.

After you have confirmed your password, the vault is created. You will find it now on the start page of your Cryptomator app, where you can open your vault and optionally change settings. [documentation will follow]
10.2 Add Existing Vaults

To add an existing vault, click on the plus sign and choose Add existing vault in the next screen.
You will now be prompted to select the cloud provider where the vault is located. Choose between Dropbox, Google Drive, OneDrive (works also with OneDrive for Business) or Local storage (which means your local device with all attached devices).

If your desired provider is not listed and offers WebDAV access, please select WebDAV as the storage location of your vault. Here you can find WebDAV URLs of Common Cloud Storage Services.
If not already done, you have to create the connection between the Cryptomator app and your storage provider account. Please follow the instructions in the Cloud Management chapter and continue later here.

Now that you’ve established a connection, you’ll add the existing vault.

In the first step, please choose the folder in which the vault is located. This folder name is the same as the vault name (in this example, our vault name is test vault so we select this folder).
Then choose the `masterkey.cryptomator` file.
Now the vault is added to the list of vaults. You will find it now on the start page of your Cryptomator app, where you can open your vault and optionally change settings. [documentation will follow]
10.3 Remove Vaults

If you want a specific vault to stop being displayed in Cryptomator, you select the V next to the vault and choose Remove.
10.3. Remove Vaults

Confirm the deletion process using the **Delete** button.
Photos

Are you sure you want to remove this vault?

This action will only remove the vault from this list and not delete it physically.

CANCEL  DELETE
Note: By removing a vault, it is only removed from the list but not deleted in the cloud. You can re-add the vault afterwards.

10.4 Change Vault Password

If you want change the password of a specific vault in Cryptomator, you select the ▼ next to the vault and choose Change password.
Enter the old password and choose a **secure** new one. Basically, you have the whole Unicode for choosing a password including non-printable characters.
Warning: You have to remember this password at all times because there is no way to access your data if you forget your password. Choose a good password to make your data secure.

Start the process using the CHANGE PASSWORD button.
10.4. Change Vault Password

Photos

Old Password

New Password

Retype password

Very weak

IMPORTANT: If you forget your password, there is no way to recover your data.

Changing password...

CANCEL     CHANGE PASSWORD
**Note:** The password is used to derive a KEK, which is then used to encrypt further keys. The KEK changes, but the keys encrypted with the KEK will stay the same. The actual files will not get re-encrypted, meaning you cannot upgrade a weak passphrase to a stronger one once the data has been synced to a service that allows recovery of older versions of the masterkey file.

If you like to encrypt your vault files with a new, stronger password, you need to create a new vault and copy the data from the old to the new one. Make sure to wipe all backups of the old vault afterwards.
10.5 Rename Vault

If you want to change the name of a specific vault in Cryptomator, you select the ▼ next to the vault and choose Rename.
Choose a new name and confirm using the RENAME button.
10.5. Rename Vault
10.6 Change Vault Position

If you want to change the position of a specific vault in the vault list in Cryptomator, long-press on the vault and drag it to the desired position in the pressed state:
This section shows you how to work with a vault like view its content, move files or access it with other applications.

### 11.1 Unlock Vault

If you want to access the data inside a vault, you have to unlock it by selecting it.
In the next step, you have to unlock the vault using the password. If the device supports fingerprint authentication and you’ve activated it in the settings for this vault, you will be prompted to unlock using fingerprint. How to setup fingerprint authentication will be documented in a separate chapter.
11.1. Unlock Vault
After providing the credentials, the vault gets unlocked and opened.
11.1. Unlock Vault

Cryptomator Documentation, Release 1.5.0
11.2 Lock Vault

To lock an unlocked vault, there are several ways to do this:

• use the lock button in the vault list
• use the lock button in the notification
• use the lock button in the vault actions and
11.2. Lock Vault
Chapter 11. Working with Vaults
11.2. Lock Vault
All of the possibilities will result in the locked vault.
Note: The auto-lock timeout specified in the settings will lock the vault if Cryptomator is in background. Furthermore if not changed in settings, the vault gets locked if the screen turns off.

11.3 View and Edit File

Start the view and edit process by clicking on a file. Finish the editing or viewing using the back button of the device until you’re back in Cryptomator. If the content has changed, the upload process starts.
11.4 Rename File or Folder

To change the name of a specific file or folder in Cryptomator, you select the ▼ next to the file or folder and choose Rename.
Choose a new name and confirm using the RENAME button.
Chapter 11. Working with Vaults
11.5 Move File or Folder

To move a file or a folder into another folder, you select the V next to the file or folder and choose Move.
Chapter 11. Working with Vaults
Choose a new location by selecting a folder or by pressing the back button of your phone to navigate to the parent folder.
Confirm using the MOVE button.
While moving, you can use the button to create a new folder in the current folder.
11.6 Delete File or Folder

To delete a specific file or folder in Cryptomator, you select the v next to the file or folder and choose Delete.
11.6. Delete File or Folder
Confirm the deletion process using the DELETE button.
11.6. Delete File or Folder

Cryptobot.png
Are you sure you want to delete this file?

CANCEL    DELETE
11.7 Export File or Folder

To export a specific file or folder in Cryptomator, you select the √ next to the file or folder and choose Export.

**Note:** By deleting a folder, all subfolders and files inside are deleted recursively.
Chose the target location where the file or folder should be exported to.
11.7. Export File or Folder
11.8 Share File with Other App

To share a specific file or folder in Cryptomator with another app, you select the \( V \) next to the file or folder and choose Share.
Choose the target app in which you will use the file or folder.
11.9 Share File with Cryptomator

You can share files from another app with Cryptomator. We use as example the Files app from Android.

You select the file(s) to share by long clicking on it. Press the share button to choose to share these file(s) and select Cryptomator.
Choose the vault and optionally specify the target folder in the vault (default is the root).
Then the encryption and upload starts.
11.9. Share File with Cryptomator
11.10 Search in Folder

Search for files or folders within the same folder using the magnifier.
Now you can enter the pattern after which you want to search in this folder.
Using the $X$ you can clear the pattern and after pressing it again, the filter mode is finished.
In the settings there are two options that influence the behavior of the search:

- Live search (disabled by default)
- Search using glob pattern matching (disabled by default)

For more information, see the Settings chapter.

11.11 Sort Folder by...
11.12 Fast scroll

If the folder contents are sorted by file size, the preview will show the file sizes accordingly. The same applies to the modification date.
Settings

You can configure Cryptomator to your needs. This section provides an overview of the different settings.

12.1 General Settings

After pressing the three dots and clicking on Settings, you will find options to customize Cryptomator.
Chapter 12. Settings
12.1.1 Cloud Services

This setting lists all cloud services. When pressing on a service, the authentication starts or if you’re already authenticated, you will be logged out.
12.1.2 Fingerprint

**Note:** This setting is only available if your device supports the fingerprint authentication.

With the toggle button in the right upper corner, the fingerprint will be generally enabled/disabled. Using the toggle button next to the vault, it will be enabled/disabled for this vault.
12.1. General Settings

Fingerprint

Activate fingerprint

1. Top Secret
2. Project X
3. Contracts
4. Trip to California
5. Photos
After enabling, you have to unlock the vault using the password.
12.1. General Settings

Biometric authentication

Activate biometric authentication
Confirm face unlock (if available)

Photos
Password

Please wait...

Biometric login
Log in using your biometric credential

Touch the fingerprint sensor

Use vault password
To have access to the key stored in the keystore, you have to authenticate against the system using the fingerprint.

12.1.3 Block App When Obscured

Under certain circumstances, Cryptomator for Android may not respond to touches.

This is most often caused by apps which apply a color filter to the device. Examples are the apps Twilight or Blue Light Filter. When disabling or uninstalling such apps, Cryptomator will work again.

The reason for Cryptomator not working is that the user interface of Cryptomator is obscured. Whenever another app obscures Cryptomator, it could intercept the input done to Cryptomator or display a false UI tricking the user into doing stuff he does not want to do. For security reasons, Cryptomator is disabled by default when obscured. The Android documentation contains some more details.
Starting from version 1.3.0, this protection can be disabled in the settings. We rather recommend to use the app without a blue light filter because this is more secure.

If you want to disable protection, the blue light filter or any app obscuring Cryptomator has to be disabled one time. Afterwards, the settings can be opened and the option “Disable app when obscured” can be disabled. And then the relevant apps can be reenabled again.

To identify apps which could cause this, open the Android settings and navigate to **Settings - Apps - Advanced (gear icon) - Draw over other apps**. This will list the installed Apps and will show you which ones are allowed to draw over other apps. You can disable this for most apps (but not for system apps like the keyboard but this should not cause any problems).

If you see this dialog, some app is able to draw over Cryptomator:

12.1.4 Screen Security

Android provides the possibility to prevent the system and other apps from doing screenshots, screen recordings etc. while Cryptomator is active. This feature is very important because it prevents other apps from reading data across the screen.

This feature is enabled for all our views. For some devices, e.g. a Chromebook with a second display or to create a screenshot and disable it again, we made this option since the 1.3.9 configurable.
12.1.5 Style

You can choose between the following three styles:

- **Automatic (follow system):** Follows the system specified in the Android settings
- **Light:** App shows in light mode
- **Dark:** App shows in dark mode
12.2 Search

You can use the magnifier inside the cloud node list to search for specific nodes. Thereby there are two settings:

- Live search (disabled by default)
- Search using glob pattern matching (disabled by default)

both are described in the following chapters.
12.2.1 Live Search

If this setting is enabled, the search mode is live. That means, the search starts immediately after entering the search pattern.

If it is disabled, you have to use the magnifier or the enter button in your keyboard to start the search.

12.2.2 Search using glob pattern matching

If this setting is enabled, you have to enter a glob pattern into the search bar.

If it is disabled, the beginning of the cloud node names must match the entered text. Upper and lower case is not relevant in this option.

12.3 Automatic Locking

If a vault is unlocked and Cryptomator isn’t active, the automatic locking timeout is counting down. After the timeout expires, all vaults get locked. You can choose between:

- 1 minute
- 2 minutes
- 5 minutes
- 10 minutes
- Never

When screen is disabled can be deactivated so that the vaults don’t get locked when the screen locks.

12.4 Automatic Photo Upload

If the Automatic photo upload is enabled, all photos taken will be marked for upload and after the specified vault gets unlocked again, the upload starts.

Under the setting Choose vault for upload, you can specify the target vault and folder in the vault where the images will be placed.

Which pictures will be tracked, depends on the Android version on your phone:

- Nougat (API level 24 or 7.x) and later: All images which Android adds to the gallery will be uploaded to the vault
- Pre-Nougat: Only the images created with the camera will be uploaded to the vault

12.5 Cache

Introduced in version 1.5.0, if enabled, all downloaded files will be cached (encrypted) on the file system. Further downloads will only verify with the server, that the cached file is still the latest version. If so it will not be downloaded again but directly retrieved from the file system. The cache is implemented using a least recently used mechanism, that means, the oldest entry will be overwritten if the max cache size is reached.
12.5.1 Cache Size Per Cloud

Using this setting, you can specify the total max cache size per cloud provider.

You can choose between the following options:

- 50 MB
- 100 MB
- 250 MB
- 500 MB
- 1 GB
- 5 GB

**Note:** The more memory is given to caching, the greater the convenience factor. However, this memory can be used up to the maximum on the system and is then no longer available.

12.5.2 Clear Cache

This setting will flush all cached files.

12.6 Support

If you have problems with the app you can enable the **Debug mode**. After reproducing the problem, you can disable the **Debug mode** again and send a log file.

12.7 Version

This setting displays the current version of this app.

The following sub settings are only available, if you’re using the APK-Store version of Cryptomator and not the PlayStore one.

12.7.1 Update Check Interval

Using the specified interval below, the app checks if the latest version is installed.

You can choose between the following options:

- Once a day
- Once a week
- Once a month

12.7.2 Check For Updates

This setting displays the timestamp of the latest update check. You can click on this setting to trigger a update check.
TODO.

13.1 Requirements

Requires iOS 10.0 or later. Compatible with iPhone, iPad, and iPod touch.

13.2 Installation

You can get Cryptomator for iOS on the App Store.
CHAPTER 14

Vault Management

TODO.

14.1 Create a New Vault

To create a new vault, click on the plus sign and choose Create New Vault in the next screen.
<table>
<thead>
<tr>
<th>Verzeichnis</th>
<th>Vollständiges Pfadname</th>
</tr>
</thead>
<tbody>
<tr>
<td>/PRIVAT/Cryptomator</td>
<td></td>
</tr>
<tr>
<td>DOC</td>
<td>/DOC</td>
</tr>
<tr>
<td>BILDER</td>
<td>/BILDER</td>
</tr>
</tbody>
</table>
Note: If you already have a vault created with the desktop app and just want to add this vault to your mobile app, please select Add Existing Vault and proceed. [documentation will follow]

You will now be prompted to select the cloud provider where you want to store your vault.

Choose between iCloud Drive, Dropbox, Google Drive, or OneDrive (works also with OneDrive for Business).

If your desired provider is not listed and offers WebDAV access, please select WebDAV as the storage location of your vault.

14.1. Create a New Vault
In the next step, you will create the connection between the Cryptomator app and your storage provider account. (In this example, Dropbox was chosen.)

Please enter the credentials for your provider account. If your authentication was successful, the provider might ask you to grant Cryptomator access permission to your online files. Please allow this permission.
Melden Sie sich bei Dropbox an, um eine Verknüpfung mit Cryptomator herzustellen

Mit Google anmelden

oder

E-Mail-Adresse

Kennwort

Diese Seite ist durch reCAPTCHA geschützt und unterliegt der Datenschutzerklärung und den Nutzungsbedingungen von Google.

Anmelden

Neu bei Dropbox? App herunterladen!
Note: Cryptomator uses the login process offered by the cloud providers. Any account information (e.g., tokens for remembering your login) is stored locally on your device and secured in the iOS keychain. In case of WebDAV, the credentials are stored in the iOS keychain.

You can only create one connection between your cloud storage account and the Cryptomator app for each provider. You can’t connect to (for example) two different Dropbox accounts.

You can remove Cryptomator permissions from your online storage account at any time. Please keep in mind that Cryptomator then cannot connect to your vault anymore.
Now that you’ve established a connection, you’ll create the actual vault.
In the first step, please enter a name for your new vault. This name will also be the folder name of your vault files in your online storage.

Then choose the location on your cloud storage where you want to have your encrypted vault files stored.
And last but not least, create a **secure** password for your vault. Basically, you have the whole Unicode for choosing a password including non-printable characters.
Warning: You have to remember this password at all times because there is no way to access your data if you forget your password. Choose a good password to make your data secure.

After you have confirmed your password, the vault is created. You will find it now on the start page of your Cryptomator app, where you can open your vault and optionally change settings. [documentation will follow]
WICHTIG: Falls Sie Ihr Passwort vergessen, gibt es keine Möglichkeit Ihre Daten wiederherzustellen.
14.1. Create a New Vault
Cryptomator was designed to solve privacy issues when saving files to cloud storages.

The risk that the cloud provider or third parties access the data stored in the cloud without permission is mitigated. Only people who know the vault password are able to read the files in the vault or change the file contents undetected. This is true for file contents as well as for filenames.

To allow a working synchronization with the cloud, there are some meta information that Cryptomator does not encrypt. These are:

- access, modification, and creation timestamp of files and folders,
- number of files and folders in a vault and in the folders, and
- size of the stored files.

In addition, you have to keep in mind what Cryptomator is not. Protection of the files on the local computer is not the focus of Cryptomator. Cryptomator is not a complete replacement for other encryption tools based on container files if the aforementioned meta information should be encrypted. Cryptomator does not provide protection if programs create backup copies of the encrypted files when working with them. Such files are not detected by Cryptomator and may remain on the computer even after unlocking a vault. Cryptomator cannot provide protection if the local computer is infected with malware which reads entered passwords and file contents (e.g., files in an unlocked vault).

To protect against such risks, other methods, like complete disk encryption, immediate installation of system and software updates, and the use of applicable antivirus software, is required.
16.1 Virtual Filesystem

Cryptomator provides a virtual drive. Add, edit, remove files as you’re used to with just any disk drive.

Files are transparently en- and decrypted. There are no unencrypted copies on your hard disk drive. With every access on your files inside the virtual drive, Cryptomator will en- and decrypt these files on-the-fly.

Currently Dokany (on Windows) and FUSE (on macOS and Linux) are our frontends of choice. If they’re not available on your system, Cryptomator will fall back on WebDAV, as it is supported on every major operating system. WebDAV is an HTTP-based protocol and Cryptomator acts as a WebDAV server accepting so-called loopback connections on your local machine only.

Whenever your file manager accesses files through this virtual drive, Cryptomator will process this request via the following layers.

16.2 Masterkey Derivation

Each vault has its own 256 bit encryption as well as MAC masterkey used for encryption of file specific keys and file authentication, respectively.

These keys are random sequences generated by a CSPRNG (Cryptographically secure pseudorandom number generator). We use SecureRandom with SHA1PRNG, seeded with 440 bits from SecureRandom.getInstanceStrong().

Both keys are encrypted using RFC 3394 key wrapping with a KEK (Key-encryption key) derived from the user’s password using scrypt.

```
encryptionMasterKey := createRandomBytes(32)
macMasterKey := createRandomBytes(32)
kek := scrypt(password, scryptSalt, scryptCostParam, scryptBlockSize)
wrappedEncryptionMasterKey := aesKeyWrap(encryptionMasterKey, kek)
wrappedMacMasterKey := aesKeyWrap(macMasterKey, kek)
```
Cryptomator Documentation, Release 1.5.0

The wrapped keys and the parameters needed to derive the KEK are then stored as integers or Base64-encoded strings in a JSON file named `masterkey.cryptomator`, which is located in the root directory of the vault.

```
{
    "version": 7, // vault version for checking software compatibility */
    "scryptSalt": "QGk...jY=",
    "scryptCostParam": 16384,
    "scryptBlockSize": 8,
    "primaryMasterKey": "QDi...Q==", /* wrappedEncryptionMasterKey */
    "hmacMasterKey": "L83...Q==", /* wrappedMacMasterKey */
    "versionMac": "3/U...9Q=", /* HMAC-256 of vault version to prevent undetected_
    → downgrade attacks */
}
```

When unlocking a vault the KEK is used to unwrap (i.e. decrypt) the stored masterkeys.

16.3 File Header Encryption

The file header stores certain metadata, which is needed for file content encryption. It consists of 88 bytes.

- 16 bytes nonce used during header payload encryption.
- 40 bytes AES-CTR encrypted payload consisting of:
  - 8 bytes filled with 1 for future use (formerly used for file size) and
  - 32 bytes file content key.
- 32 bytes header MAC of the previous 56 bytes.

```
headerNonce := createRandomBytes(16)
contentKey := createRandomBytes(32)
cleartextPayload := 0xFFFFFFFFFFFFFFFF . contentKey
ciphertextPayload := aesCtr(cleartextPayload, encryptionMasterKey, headerNonce)
mac := hmacSha256(headerNonce . ciphertextPayload, macMasterKey)
```

16.4 File Content Encryption

This is where your actual file contents get encrypted.

The cleartext is broken down into multiple chunks, each up to 32 KiB + 48 bytes consisting of:
• 16 bytes nonce,
• up to 32 KiB encrypted payload using AES-CTR with the file content key, and
• 32 bytes MAC consisting of:
  - file header nonce (to bind this chunk to the file header),
  - chunk number as 8 byte big endian integer (to prevent undetected reordering),
  - nonce, and
  - encrypted payload.

Afterwards, the encrypted chunks are joined preserving the order of the cleartext chunks. The payload of the last chunk may be smaller than 32 KiB.

```c
for (int i = 0; i < length(cleartextChunks); i++) {
    chunkNonce := createRandomBytes(16)
    ciphertextPayload := aesCtr(cleartextChunks[i], contentKey, chunkNonce)
    mac := hmacSha256(headerNonce . bigEndian(i) . chunkNonce . ciphertextPayload, macMasterKey)
    ciphertextChunks[i] := chunkNonce . ciphertextPayload . mac
}
ciphertextFileContent := join(ciphertextChunks[])
```

### 16.5 Directory IDs

Each directory has a unique ID that is required during filename encryption. For historical reasons, the directory ID is a string, even though any byte sequence would do the job.

The directory ID for the root directory is the empty string. For all other directories, it is a random sequence of at most 36 ASCII chars. We recommend using random UUID (Universally unique identifier).

```c
dirId := createUuid()
```

When traversing directories, the directory ID of a given subdirectory is processed in four steps to determine the storage path inside the vault:

1. Encrypting the directory ID using AES-SIV in order to encrypt directory hierarchies.
2. Creating a SHA1 hash of the encrypted directory ID in order to get a uniform length.
3. Encoding the hash with Base32 to get a string of printable chars.
4. Constructing the directory path out of the Base32-encoded hash.
**Fig. 2: Random per chunk change**

```
dirIdHash := base32(sha1(aesSiv(dirId, null, encryptionMasterKey, macMasterKey)))
dirPath := vaultRoot + '/d/' + substr(dirIdHash, 0, 2) + '/' + substr(dirIdHash, 2, 30)
```

Regardless of the hierarchy of cleartext paths, ciphertext directories are always stored in a flattened structure. All directories will therefore effectively be siblings (or cousins, to be precise).

### 16.6 Filename Encryption

The cleartext name of a file gets encoded using UTF-8 in Normalization Form C to get a unique binary representation.

Cryptomator uses AES-SIV to encrypt names. The directory ID of the parent folder is passed as associated data. This prevents undetected movement of files between directories.

```
ciphertextName := base64url(aesSiv(cleartextName, parentDirId, encryptionMasterKey, ¬ macMasterKey)) + '.c9r'
```

**Fig. 3: Unencrypted directory ID of the parent dir as described above**
Depending on the kind of node, the encrypted name is then either used to create a file or a directory.

- Files are stored as files.
- Non-files are stored as directories. The type of the node then depends on the directory content.
  - Directories are denoted by a file called `dir.c9r` containing aforementioned directory ID.
  - Symlinks are denoted by a file called `symlink.c9r` containing the encrypted link target.
  - Further types may be appended in future releases.

Thus, a cleartext directory structure like this:

```
File.txt
SymlinkToFile.txt
Subdirectory
...
```

Becomes a ciphertext directory structure like this:

```
.d
  BZ
     R4VZ5S5PEF7TU3PMFIMON5GJRNBDWA
     5TyvCyF25ssRtfrIv++8ucADQ==.c9r # File.txt
     FHTa55bH*SUfVDbE0qTL9hZ8nho.c9r # Subdirectory
     dir.c9r # contains dirId
     gLeOGMCN358UBf2Qk9cWCQ1.c9r # SymlinkToFile.txt
     symlink.c9r # contains link target
  FC
     ZKZRLZUODUUVYTYA4457CSBPZXB5A77 # contains contents of Subdirectory
     ...
  masterkey.cryptomator
  masterkey.cryptomator.DFD9B248.bkup
```

### 16.7 Name Shortening

**Note:** This layer doesn’t provide any additional security. Its sole purpose is to maximize compatibility.

To maximize compatibility, we need to make sure the ciphertext names don’t exceed a length of 255 chars. As some cloud sync services might want to add a suffix to a file in case of conflicts, we decided to use at most 220 chars.

If an encrypted name (including its `.c9r` extension) exceeds these 220 chars, we will instead create a directory named after its much shorter SHA-1 hash and the `.c9s` extension. Additionally, we will create a reverse-mapping file named `name.c9s` containing the original file inside of this directory.

```java
if (length(ciphertextName) > 220) {
    deflatedName := base64url(sha1(ciphertextName)) + '.c9s'
    inflatNameFilePath := deflatedName + '/name.c9s'
    fileContentsPath := deflatedName + '/contents.c9r'
    symlinkFilePath := deflatedName + '/symlink.c9r'
    dirIdFilePath := deflatedName + '/dir.c9r'
}
```

Again, we have to distinguish the kind of a node.

- Non-files (such as symlinks or directories) are stored as a directory anyway. Nothing changes for them.
Files, on the other hand, need a different place to store their contents. Therefore, we introduce the `contents.c9r` file inside the `.c9s` directory.

A vault containing several nodes with very long names might result in a ciphertext structure like this:

```plaintext
.. d
   R4VZS5PEF7TU3PMFIMON5GJRNBDA
   StvCyE255sRtfr1V**83ucADQ==.c9r
   FHTa55bH+sUFVDBb0gTL9hZ8nh0.c9r
   dir.c9r
   gLeOGMCN358*UBf2Qk9cWQl.c9r
   symlink.c9r
   Ij7sXtR6bAAuxzLPV9T0k2vg=.c9s  # shortened name...
   contents.c9r  # node is a regular file
   name.c9s  # mapping to this full name
   q2nx5XeNGenHyQvkFD4mxYNrWpQ=.c9s  # shortened name...
   dir.c9r  # node is a directory
   name.c9s  # mapping to this full name
   u*JJCJE-T4IH-EBYASUplu3p7mA=.c9s  # shortened name...
   name.c9s  # mapping to this full name
   symlink.c9r  # node is a symlink
   FC
   ZKZRLZUODUUYTYA4457CSBPZX5A77
   ...
   masterkey.cryptomator
   masterkey.cryptomator.DFD9B248.bkup
```
17.1 Sharing of Vaults

Always be careful when sharing your vault with other people. In general, keep your vault password secret. Nobody except yourself should know the vault password. Only when you use a vault together with other people, they may know your vault password. Keep in mind that other people could pass on – with or without intent – the vault password. Only share your vaults with people you trust.

If you share a vault with others, do not communicate the vault password on an insecure channel. Tell the password in person, use encrypted email or messengers or other similar secure means.

17.2 Good Passwords

Bad passwords can be cracked easily when using computers. Plenty of recommendations exist for secure passwords. Some of these are:

- A password should not contain public or personal information like the name of your pet, date of birth, or username.
- A password should be long.
- A password should not be an existing word or a combination of few words. It should be a combination of characters or words that is as random as possible.
- For each purpose, a unique password without similarities to other passwords should be used.

If you fulfill these requirements, you quickly reach a point where remembering the passwords gets impossible. Thus, we recommend to use a password manager to generate and store the passwords. By doing so, you only have to remember a few or a single secure password. Otherwise, we recommend to use at least 10 characters, ideally use sentences instead of words.
Under some circumstances, Cryptomator refuses to automatically migrate a vault to a newer format. In this case, your vault will remain untouched, so you can continue using it with the previous version.

To upgrade to the latest version, you can perform a migration manually:

1. Unlock the vault with the previous version of Cryptomator that you have used. You can find downloads of older versions on our GitHub site.
2. Copy all files from this vault onto a temporary storage location on your computer. Be aware that these files are decrypted.
3. Once finished, lock your vault and quit Cryptomator. Now install the latest version of Cryptomator.
4. Create new vault with the latest version of Cryptomator and unlock it.
5. Copy all files from step 2 into the new vault.

**Note:** One reason why automatic migration is impossible might be the fact that your vault is stored in a location that limits filename or path lengths, such as:

- Network drives on Windows, such as WebDAV mounts
- eCryptfs-encrypted volumes on Linux

In this case, during step 5, you may encounter warnings indicating that you can not encrypt files due to such length limitations. Feel free to simply change the name of any affected files.
19.1 How Can You Help Us?

Cryptomator is an open source project and wouldn’t be possible without contributions from users who support the idea.

There are several ways you can help us:

- By reporting bugs or feature requests on GitHub,
- By discussing solutions in our community,
- By contributing patches or features via pull requests,
- By helping us with the localization of Cryptomator,
- By improving this documentation,
- By becoming a sponsor,
- Or by donating to the maintainers.

19.2 Before You Start

If you plan to help, please stick to our Code of Conduct.

Our code is licensed under GPLv3 and this documentation under CC-BY-SA 4.0. If you contribute either, your grant us the rights to publish your contributions under those licenses. Also you have to digitally sign a Contributor License Agreement (CLA). This is required to protect the maintainers of Cryptomator from legal problems with patent or copyright infringement. The CLA signature process is triggered by your first pull request automatically. You will be asked to authenticate with your GitHub account and your username will be stored even if you revoke any activity on GitHub.
Cryptomator vaults need to adhere to a structure and format (as described in Security Architecture) that may change over time. In order to identify the correct format, the masterkey file contains a version number, which represents the vault format.

## 20.1 Format 7

Introduced in Cryptomator 1.5.0 on 2020-04-16. The following changes are:

- Added file extension (*.c9r and *.c9s) to all encrypted files and directories. Certain cloud storage services have issues with files without an extension.
- Encrypted directories are now actually directories. Directory file is now inside of that with the fixed name dir.c9r.
- Encrypted symlinks are now directories. Symlink file is now inside of that with the fixed name symlink.c9r.
- Files and directories with shortened filenames are now directories (identifiable by the .c9s suffix). Mapping file with the long filename is now inside of that with the fixed name name.c9s. If it’s a regular file, the content file has the fixed name contents.c9r.
- Removed directory m because mapping files for shortened filenames are now in d as well.
- Filenames are encoded with base64url so that name shortenings are less likely.
- Increased ciphertext filename threshold to 220 characters.

This is an example of the vault structure:

```
.d
  BZ
  R4VZSS5PEF7TU3PMFIMON5GJRNBDA
    5TtvCyF255sRtfrIV__B3ucADQ=-.c9r # regular file
    FHTa55bh_sUFVDdBEB0gTl9h28nho.c9r # irregular file...
    dir.c9r # ...which is a directory
    qLeOGMCN358 UBf2Qk9cWCQ1.c9r # irregular file...
    symlink.c9r # ...which is a symlink
    IjTasXtrtY6bAAuxzLPV9T0k2v=..c9s # shortened name...
```
20.2 Format 6

Introduced in Cryptomator 1.3.0 on 2017-07-01. The following changes are:

- Password is normalized in NFC.

20.3 Format 5

Introduced in Cryptomator 1.2.0 on 2016-09-19. The following changes are:

- Dropped file size obfuscation support.

File sizes can be determined in \( O(1) \) instead of having to read and decrypt the file header. This allows showing file sizes in the directory listing without having to download each file first. The file size in the header is now unused and filled with \( 0xFFFFFFFFFFFFFFFF \).

20.4 Format 4

Introduced in Cryptomator 1.1.1 on 2016-07-08. The following changes are:

- Directories now have \( 0 \) (zero) prefix instead of a \( _ \) (underscore) suffix.

Directories are now stored with different names to avoid conflicts with the naming scheme of certain cloud storage services in case of synchronization conflicts.

This is an example of the vault structure:
20.5 Format 3

Introduced in Cryptomator 1.0.0 on 2016-03-09.

Vault format 3 is basically the official “first” version. To be exact, it was actually introduced in Cryptomator Beta 0.11 on 2016-03-03. Vault formats 1 and 2 were only used in beta versions of Cryptomator.

This is an example of the vault structure: